
32
CHAPTER

 1041

Exploring Swing

The previous chapter described several of the core concepts relating to Swing and showed
the general form of both a Swing application and a Swing applet. This chapter continues
the discussion of Swing by presenting an overview of several Swing components, such as
buttons, check boxes, trees, and tables. The Swing components provide rich functionality
and allow a high level of customization. Because of space limitations, it is not possible to
describe all of their features and attributes. Rather, the purpose of this overview is to give
you a feel for the capabilities of the Swing component set.

The Swing component classes described in this chapter are shown here:

JButton JCheckBox JComboBox JLabel

JList JRadioButton JScrollPane JTabbedPane

JTable JTextField JToggleButton JTree

These components are all lightweight, which means that they are all derived from
JComponent.

Also discussed is the ButtonGroup class, which encapsulates a mutually exclusive set of
Swing buttons, and ImageIcon, which encapsulates a graphics image. Both are defined by
Swing and packaged in javax.swing.

One other point: The Swing components are demonstrated in applets because the code
for an applet is more compact than it is for a desktop application. However, the same
techniques apply to both applets and applications.

JLabel and ImageIcon
JLabel is Swing’s easiest-to-use component. It creates a label and was introduced in the
preceding chapter. Here, we will look at JLabel a bit more closely. JLabel can be used to
display text and/or an icon. It is a passive component in that it does not respond to user
input. JLabel defines several constructors. Here are three of them:

JLabel(Icon icon)
JLabel(String str)
JLabel(String str, Icon icon, int align)

1042 PART III Introducing GUI Programming with Swing

Here, str and icon are the text and icon used for the label. The align argument specifies the
horizontal alignment of the text and/or icon within the dimensions of the label. It must be
one of the following values: LEFT, RIGHT, CENTER, LEADING, or TRAILING. These
constants are defined in the SwingConstants interface, along with several others used by
the Swing classes.

Notice that icons are specified by objects of type Icon, which is an interface defined by
Swing. The easiest way to obtain an icon is to use the ImageIcon class. ImageIcon implements
Icon and encapsulates an image. Thus, an object of type ImageIcon can be passed as an
argument to the Icon parameter of JLabel’s constructor. There are several ways to provide
the image, including reading it from a file or downloading it from a URL. Here is the
ImageIcon constructor used by the example in this section:

ImageIcon(String filename)

It obtains the image in the file named filename.
The icon and text associated with the label can be obtained by the following methods:

Icon getIcon()
String getText()

The icon and text associated with a label can be set by these methods:

void setIcon(Icon icon)
void setText(String str)

Here, icon and str are the icon and text, respectively. Therefore, using setText() it is
possible to change the text inside a label during program execution.

The following applet illustrates how to create and display a label containing both an
icon and a string. It begins by creating an ImageIcon object for the file hourglass.png,
which depicts an hourglass. This is used as the second argument to the JLabel constructor.
The first and last arguments for the JLabel constructor are the label text and the alignment.
Finally, the label is added to the content pane.

// Demonstrate JLabel and ImageIcon.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JLabelDemo" width=250 height=200>
 </applet>
*/

public class JLabelDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);

 Chapter 32 Exploring Swing 1043

Pa
rt

 II
I

 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Create an icon.
 ImageIcon ii = new ImageIcon("hourglass.png");

 // Create a label.
 JLabel jl = new JLabel("Hourglass", ii, JLabel.CENTER);

 // Add the label to the content pane.
 add(jl);
 }
}

Output from the label example is shown here:

JTextField
JTextField is the simplest Swing text component. It is also probably its most widely used text
component. JTextField allows you to edit one line of text. It is derived from JTextComponent,
which provides the basic functionality common to Swing text components. JTextField uses
the Document interface for its model. Three of JTextField’s constructors are shown here:

JTextField(int cols)
JTextField(String str, int cols)
JTextField(String str)

Here, str is the string to be initially presented, and cols is the number of columns in the text
field. If no string is specified, the text field is initially empty. If the number of columns is
not specified, the text field is sized to fit the specified string.

JTextField generates events in response to user interaction. For example, an ActionEvent
is fired when the user presses enter. A CaretEvent is fired each time the caret (i.e., the
cursor) changes position. (CaretEvent is packaged in javax.swing.event.) Other events are

1044 PART III Introducing GUI Programming with Swing

also possible. In many cases, your program will not need to handle these events. Instead,
you will simply obtain the string currently in the text field when it is needed. To obtain the
text currently in the text field, call getText().

The following example illustrates JTextField. It creates a JTextField and adds it to the
content pane. When the user presses enter, an action event is generated. This is handled
by displaying the text in the status window.

// Demonstrate JTextField.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JTextFieldDemo" width=300 height=50>
 </applet>
*/

public class JTextFieldDemo extends JApplet {
 JTextField jtf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add text field to content pane.
 jtf = new JTextField(15);
 add(jtf);
 jtf.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 // Show text when user presses ENTER.
 showStatus(jtf.getText());
 }
 });
 }
}

Output from the text field example is shown here:

 Chapter 32 Exploring Swing 1045

Pa
rt

 II
I

The Swing Buttons
Swing defines four types of buttons: JButton, JToggleButton, JCheckBox, and JRadioButton.
All are subclasses of the AbstractButton class, which extends JComponent. Thus, all buttons
share a set of common traits.

AbstractButton contains many methods that allow you to control the behavior of buttons.
For example, you can define different icons that are displayed for the button when it is
disabled, pressed, or selected. Another icon can be used as a rollover icon, which is displayed
when the mouse is positioned over a button. The following methods set these icons:

void setDisabledIcon(Icon di)
void setPressedIcon(Icon pi)
void setSelectedIcon(Icon si)
void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for the indicated purpose.
The text associated with a button can be read and written via the following methods:

String getText()
void setText(String str)

Here, str is the text to be associated with the button.
The model used by all buttons is defined by the ButtonModel interface. A button

generates an action event when it is pressed. Other events are possible. Each of the
concrete button classes is examined next.

JButton
The JButton class provides the functionality of a push button. You have already seen a
simple form of it in the preceding chapter. JButton allows an icon, a string, or both to be
associated with the push button. Three of its constructors are shown here:

JButton(Icon icon)
JButton(String str)
JButton(String str, Icon icon)

Here, str and icon are the string and icon used for the button.
When the button is pressed, an ActionEvent is generated. Using the ActionEvent object

passed to the actionPerformed() method of the registered ActionListener, you can obtain
the action command string associated with the button. By default, this is the string displayed
inside the button. However, you can set the action command by calling setActionCommand()
on the button. You can obtain the action command by calling getActionCommand() on the
event object. It is declared like this:

String getActionCommand()

The action command identifies the button. Thus, when using two or more buttons within
the same application, the action command gives you an easy way to determine which button
was pressed.

In the preceding chapter, you saw an example of a text-based button. The following
demonstrates an icon-based button. It displays four push buttons and a label. Each button

1046 PART III Introducing GUI Programming with Swing

displays an icon that represents a timepiece. When a button is pressed, the name
of that timepiece is displayed in the label.

// Demonstrate an icon-based JButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JButtonDemo" width=250 height=750>
 </applet>
*/

public class JButtonDemo extends JApplet
implements ActionListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add buttons to content pane.
 ImageIcon hourglass = new ImageIcon("hourglass.png");
 JButton jb = new JButton(hourglass);
 jb.setActionCommand("Hourglass");
 jb.addActionListener(this);
 add(jb);

 ImageIcon analog = new ImageIcon("analog.png");
 jb = new JButton(analog);
 jb.setActionCommand("Analog Clock");
 jb.addActionListener(this);
 add(jb);

 ImageIcon digital = new ImageIcon("digital.png");
 jb = new JButton(digital);
 jb.setActionCommand("Digital Clock");
 jb.addActionListener(this);
 add(jb);

 Chapter 32 Exploring Swing 1047

Pa
rt

 II
I

 ImageIcon stopwatch = new ImageIcon("stopwatch.png");
 jb = new JButton(stopwatch);
 jb.setActionCommand("Stopwatch");
 jb.addActionListener(this);
 add(jb);

 // Create and add the label to content pane.
 jlab = new JLabel("Choose a Timepiece");
 add(jlab);
 }

 // Handle button events.
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("You selected " + ae.getActionCommand());
 }
}

Output from the button example is shown here:

JToggleButton
A useful variation on the push button is called a toggle button. A toggle button looks just like
a push button, but it acts differently because it has two states: pushed and released. That is,
when you press a toggle button, it stays pressed rather than popping back up as a regular
push button does. When you press the toggle button a second time, it releases (pops up).
Therefore, each time a toggle button is pushed, it toggles between its two states.

Toggle buttons are objects of the JToggleButton class. JToggleButton implements
AbstractButton. In addition to creating standard toggle buttons, JToggleButton is a
superclass for two other Swing components that also represent two-state controls. These are
JCheckBox and JRadioButton, which are described later in this chapter. Thus, JToggleButton
defines the basic functionality of all two-state components.

JToggleButton defines several constructors. The one used by the example in this section
is shown here:

JToggleButton(String str)

1048 PART III Introducing GUI Programming with Swing

This creates a toggle button that contains the text passed in str. By default, the button is in
the off position. Other constructors enable you to create toggle buttons that contain
images, or images and text.

JToggleButton uses a model defined by a nested class called JToggleButton.Toggle-
ButtonModel. Normally, you won’t need to interact directly with the model to use a
standard toggle button.

Like JButton, JToggleButton generates an action event each time it is pressed. Unlike
JButton, however, JToggleButton also generates an item event. This event is used by those
components that support the concept of selection. When a JToggleButton is pressed in, it is
selected. When it is popped out, it is deselected.

To handle item events, you must implement the ItemListener interface. Recall from
Chapter 24, that each time an item event is generated, it is passed to the itemStateChanged()
method defined by ItemListener. Inside itemStateChanged(), the getItem() method can
be called on the ItemEvent object to obtain a reference to the JToggleButton instance that
generated the event. It is shown here:

Object getItem()

A reference to the button is returned. You will need to cast this reference to JToggleButton.
The easiest way to determine a toggle button’s state is by calling the isSelected() method

(inherited from AbstractButton) on the button that generated the event. It is shown here:

boolean isSelected()

It returns true if the button is selected and false otherwise.
Here is an example that uses a toggle button. Notice how the item listener works. It

simply calls isSelected() to determine the button’s state.

// Demonstrate JToggleButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JToggleButtonDemo" width=200 height=80>
 </applet>
*/

public class JToggleButtonDemo extends JApplet {

 JLabel jlab;
 JToggleButton jtbn;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);

 Chapter 32 Exploring Swing 1049

Pa
rt

 II
I

 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Create a label.
 jlab = new JLabel("Button is off.");

 // Make a toggle button.
 jtbn = new JToggleButton("On/Off");

 // Add an item listener for the toggle button.
 jtbn.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent ie) {
 if(jtbn.isSelected())
 jlab.setText("Button is on.");
 else
 jlab.setText("Button is off.");
 }

 });

 // Add the toggle button and label to the content pane.
 add(jtbn);
 add(jlab);
 }
}

The output from the toggle button example is shown here:

Check Boxes
The JCheckBox class provides the functionality of a check box. Its immediate superclass is
JToggleButton, which provides support for two-state buttons, as just described. JCheckBox
defines several constructors. The one used here is

JCheckBox(String str)

It creates a check box that has the text specified by str as a label. Other constructors let you
specify the initial selection state of the button and specify an icon.

